É possível implementar uma média móvel em C sem a necessidade de uma janela de amostras. Achei que posso otimizar um pouco, escolhendo um tamanho de janela que seja um poder de dois para permitir a mudança de bits em vez de dividir, mas não precisar Um buffer seria bom. Existe uma maneira de expressar um novo resultado de média móvel apenas como função do resultado antigo e da nova amostra. Definir um exemplo de média móvel, em uma janela de 4 amostras para ser: Adicionar nova amostra e: Uma média móvel pode ser implementada de forma recursiva , Mas para uma computação exata da média móvel você deve lembrar a amostra de entrada mais antiga na soma (ou seja, a no seu exemplo). Para um comprimento N média móvel você calcula: onde yn é o sinal de saída e xn é o sinal de entrada. Eq. (1) pode ser escrito de forma recursiva, então você sempre precisa se lembrar da amostra xn-N para calcular (2). Conforme indicado por Conrad Turner, você pode usar uma janela exponencial (infinitamente longa) em vez disso, o que permite calcular a saída apenas da saída passada e da entrada atual: mas esta não é uma média móvel padrão (não ponderada), mas exponencialmente Média móvel ponderada, onde as amostras no passado obtêm um peso menor, mas (pelo menos em teoria) você nunca esquece nada (os pesos ficam menores e menores para amostras no passado). Eu implementei uma média móvel sem memória de item individual para um programa de rastreamento de GPS que escrevi. Comece com 1 amostra e divida em 1 para obter o valor médio atual. Em seguida, adicione uma amostra e divida em 2 para a média atual. Isso continua até chegar ao comprimento da média. Cada vez, adiciono na nova amostra, obtenho a média e retire essa média do total. Eu não sou um matemático, mas isso pareceu uma boa maneira de fazê-lo. Achei que isso tornaria o estômago de um verdadeiro matemático, mas, é uma das maneiras aceitas de fazê-lo. E funciona bem. Basta lembrar que, quanto mais alto for seu comprimento, mais lento seguirá o que deseja seguir. Isso pode não ser importante na maioria das vezes, mas ao seguir os satélites, se você estiver lento, a trilha pode estar longe da posição atual e parecerá ruim. Você poderia ter uma lacuna entre o Sáb e os pontos de fuga. Eu escolhi um comprimento de 15 atualizado 6 vezes por minuto para obter um alisamento adequado e não chegar muito longe da posição real de SAT com os pontos de trilhos alisados. Respondeu 16 de novembro 16 às 23:03 inicialize o total 0, count0 (cada vez que vê um novo valor) Então uma entrada (scanf), um add totalnewValue, um incremento (contagem), uma média de divisão (quantidade total) Esta seria uma média móvel em relação a Todas as entradas Para calcular a média apenas nas últimas 4 entradas, seria necessário 4 variáveis de entrada, talvez copiando cada entrada para uma variável de entrada mais antiga e, em seguida, calculando a nova média móvel. Como soma das 4 variáveis de entrada, divididas por 4 (o turno direito 2 seria Bom, se todas as entradas fossem positivas para que o cálculo médio fosse respondido em 3 de fevereiro de 15 às 4:06 Isso realmente calculará a média total e NÃO a média móvel. À medida que a contagem aumenta, o impacto de qualquer nova amostra de entrada se torna ndash extremamente lento Hilmar Feb 3 15 às 13:53 Sua resposta 2017 Stack Exchange, IncMoving Filtro médio (filtro MA) Carregando. O filtro de média móvel é um filtro simples de passagem baixa FIR (finito de resposta de impulso) comumente usado para suavizar uma matriz de datasigns amostrada. Leva M amostras de entrada por vez e leva a média dessas M-samples e produz um único ponto de saída. É uma estrutura simples de LPF (Low Pass Filter) que é útil para cientistas e engenheiros para filtrar o componente ruidoso indesejado dos dados pretendidos. À medida que o comprimento do filtro aumenta (o parâmetro M), a suavidade da saída aumenta, enquanto as transições acentuadas nos dados são tornadas cada vez mais contundentes. Isso implica que este filtro possui uma excelente resposta ao domínio do tempo, mas uma resposta de freqüência fraca. O filtro MA executa três funções importantes: 1) Demora os pontos de entrada M, calcula a média desses pontos M e produz um único ponto de saída 2) Devido aos cálculos de computação envolvidos. O filtro introduz uma quantidade definida de atraso 3) O filtro atua como um filtro de passagem baixa (com resposta de domínio de freqüência fraca e uma resposta de domínio de tempo bom). Código Matlab: o código Matlab seguinte simula a resposta do domínio do tempo de um filtro M-point Moving Average e também traça a resposta de freqüência para vários comprimentos de filtro. Resposta de Domínio de Tempo: no primeiro gráfico, temos a entrada que está entrando no filtro de média móvel. A entrada é ruidosa e nosso objetivo é reduzir o ruído. A próxima figura é a resposta de saída de um filtro de média móvel de 3 pontos. Pode deduzir-se da figura que o filtro de média móvel de 3 pontos não fez muito na filtragem do ruído. Aumentamos os toques de filtro para 51 pontos e podemos ver que o ruído na saída reduziu muito, o que é retratado na próxima figura. Aumentamos as torneiras até 101 e 501 e podemos observar que mesmo - embora o ruído seja quase zero, as transições são desviadas drasticamente (observe a inclinação de cada lado do sinal e compare-os com a transição ideal da parede de tijolos em Nossa contribuição). Resposta de frequência: a partir da resposta de freqüência, pode-se afirmar que o roll-off é muito lento ea atenuação da faixa de parada não é boa. Dada esta atenuação da faixa de parada, claramente, o filtro de média móvel não pode separar uma faixa de freqüências de outra. Como sabemos que um bom desempenho no domínio do tempo resulta em desempenho fraco no domínio da freqüência e vice-versa. Em suma, a média móvel é um filtro de suavização excepcionalmente bom (a ação no domínio do tempo), mas um filtro de passagem baixa excepcionalmente ruim (a ação no domínio da freqüência) Links externos: livros recomendados: barra lateral primária
No comments:
Post a Comment